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By William C. Pitt6 and Jack N. Nielsen 

Ward's slender-body-theory formula for zero-lift drag contains three 
integrals plus a base-drag term. Two of these integral terms depend only 
upon the cross-sectional area distribution of the body. The third inte- 
gral term depends only upon the body shape and axial slopes at the base 
of the body. This term is neglected in the trsnsonic area rule because 
in many cases it is zero; however, there are also many cases in which it 
is not zero. This paper examines the term for the possibility of drag 
reduction for a particular case. The model considered consists of a 
body of revolution in combination with any wing that has an unswept trail- 
ing edge snd a constant trailing-edge angle along its span. It is found 
that (neglecting any change in base drag) a drag reduction is obtainable 
which, for the case considered, is an additional 12 percent of that 
obtained with the area-rule modification. The probable effect of viscosity 
on this theoretical result is discussed. 

INTRODUCTION 

The transonic area rule (ref. 1) relates the drag of a configuration 
end the drag of sn equivalent body of revolution having the same area 
distribution. Engineering methods have been developed from the area rule 
for calculating the drag of airplanes and missiles at zero angle of attack. 
The basis of the area rule in slender-body theory can be investigated by 
studying Ward's drag formula (ref. 2). It is found that the equivalent- 
body concept holds rigorously only if certain conditions at the base of 
the body are met, and if the trailing edge of the wing is swept or cusped. 
Frequently these conditions are violated, as pointed out in references 3 
and 4, and additional drag is obtained above that of the equivalent body. 
Berndt (ref. 3) states that two bodies have the same drag only if in addi- 
tion to being equivalent in the sense of the area rule they have the same 
cross-sectional contour at the base and the same stresmwise slope around 
that contour. In reference 3, Berndt investigates how the difference in 
drag between equivalent bodies depends upon the difference in base shape. 
The important conclusion is that, within the l3mitations of his approxi- 
mate theory, the drag of a slender body having a finite cross-sectional 
slope at the base may be considerably reduced by spreading out the base 
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contour from a circle without changing the distribution of cross-sectional 
area. Lighthill (ref. 4) ha s evaluated the drag increment over that of 
the equivalent body of revolution for planar and cruciform wings with 
unswept trailing edges alone and in combination with cylindrical body. 

It is clear from references 3 and 4 that the body shape given by the 
trsnsonic area rule does not give the minimum possible theoretical drag 
for all configurations. An example is a wing-body combination for which 
the wing trailing edge is uncusped and lies In the plane of the body base. 
The purpose of the present paper is to determine (within the accuracy of 
Ward's drag formula) how much the drag of this wing-body combination can 
be reduced by modifying the streamwise slopes- of the body at the base. 
Since viscosity can have an Imports& effect-on the reality of the 
inviscid-fluid-theory results presented herein, the probable effect of 
viscosity is discussed. 
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SYMBOLS 

parameters in cpm expansion 

parameters in 'pi expansion 

slope-amplitude function for shape modification 1 

length of wing-body combination 
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Superscripts 
. 

first derivative with respect to x 

second derivative with respect to x 

PHYSICAL CONSIDE8ATIONS 

The general statements of the Introduction can be given specific 
meaning if the drag formula of Ward is considered. - 

(1) 

The first two terms depend only on the distribution of cross-sectional 
area along the length of the wing-body combination. The third term 
depends only on the. shape of the wing-body ctibination-in the crossflow 
plane of the trailing edge (contour C in sketch (a)) and the streamwise 

L 

*-; 

Sketch (a) 

slopes of the wing and body surfaces approaching the trailing edge, The 
last term is the base drag which is not considered, although some of the 
body shape changes considered might possibly induce significant base- 
pressure changes. 

‘J 
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Since the first two terms of equation (1) depend only on the area 
distribution, they represent the drag of the equivalent body. Frequently, 
however, only the first term is used in engineering methods for calculat- 
ing wave drag based on the equivalent body concept. It is, therefore, 
important to know when all. terms (other than base drag) but the first are 
zero. Two cases c&z1 readily be found. The first case is that of a body 
with a pointed base, or a wing with a cusped or-swept trailing edge. 
Then SZ(2) is zero and the contour C is zero. The second case occurs 
when the body and/or wing is tangent to the cylindrical extension of the 
contour C. In this case the second term is zero because S*(Z) = 0 and 
the third term is zero because &p/an = 0. For other configurations, 
the second and third terms usually contribute to the drag. 

The purpose of this paper is to investigate what drag savings are 
theoretically possible through control of the third term. This is done 
by modifying the streamwise slopes of the body on contour C without 
changing the body cross-sectional area. The streamwise slopes forward 
of x= 2 can be chosen arbitrarily to fair into those at x = 2 with- 
out affecting the drag. The first two terms of equation (1) are unaffected. 

ANALYSIS 

Velocity Potentials 

The basic model and coordinate system used in the analysis are shown 
in sketch (b). Only the shape and slopes of the model in the x = 2 

r= R(x 

r 

4 

8 

Sketch (b) 
plsne need be specified. !l?he model shape forward of x = 2 is arbitrary 
except that the model must be slender in the sense of Ward's theory. The 
area-rule modification is included in the basic model. To simplify the 
analysis, the case in which the wing-trailing-edge angle is a finite 
constant along the span is considered. 
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The perturbation velocity potential Fn the crossflow plane of the 
basic model can be written in the form lc 

%=%+%I+% (2) 

where '9J is the potential of the wing alone (Including the portion 
blanketed by the body), '$ is the potential of the body plus the area-.. 
rule modification, and cpi is the interference potential that cancels 
wing-alone components of velocity through the body surface. To 'pc there 
is added a shape modification potential, qm. As previously discussed, 
the purpose for the shape modification is to modify the streamwise slopes 
of the body at x = 2 in such a manner as to reduce the drag of the 
wing-body combination. For a reason which is subsequently pointed out, 
the restriction is placed on the shape modification that the body cross 
section at x = 2 must be a circle, ThFs is not a serious restriction 
because any meridian slope distribution can be faired into a circular 
base by properly shaping the body forward of the base. The potential, QZ~, 
can be added directly to 'pc p rovided it does not violate the boundary 
condition of no flow through the wing and body surfaces. 

The wing-alone velocity potential in the crossflow plane, x = 2, is 

CpW a f Z*(2)R[(X+b)log(X+b)-(X-b)log(X-b)-2b-j (3) 

where X = reie is the complex variable in the crossflow plane. The 
other potential components, '$, cpI, and qm, .are obtained from the generai 
slender-body potential 

cp = ao(x)log r + ho(x) + 
Dkl 

(4) 

This series converges for r greater than the body radius. This is the 
exact slender-body theory potential only for body cross sections which 
are. circular. For this reason the restriction is put on the body shape 
modification that the base of the body shall remain circular. 

The parameters so(x) and b,(x) are functions only of the model 
cross-sectional area distribution. The parameters am(x) depend only 
upon the streamwise slope distribution of the body. Therefore, the 
potential of the body plus the area-rule modification is of the form 

'pB = ao(x)log r + b,(x) (5) 

and the shape modification potential is of the form 
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The parameters k(x) are determined from the boundary condition 

a?ul 
(3 ar r=a 

= vR* (x,e) 

Then, 

- O3 =Tdx) CO6 me 5 vR’(x e) c aP+l 9 

This suggests a shape modification of the form 

7 

(6) 

R'(x,f3) = 
c 

h(X) CO6 me 
In=1 

where h(x) is a slope amplitude function. To the order of accuracy of 
Ward's formula (es. (1)) this type modification meets the requirement of 
no body cross-sectional area change, and if only even values of m are 
taken, it satisfies the boundary condition of no flow through the wing 
surface. Rven values of m are also required for symmetrical flow about 
the (x-z) plane. Then, 

with 
a2n+l 

a=(x) = -v 2n g,(x) - 

The normal velocities produced on contour C by the n = 1 and n = 2 
components of 'pm are shown qualitatively by the arrows in sketch (c). 

n=l n=2 

Sketch (c) 
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The interference potential Epi is obtained from tpw by using the 
boundary condition that there be no net flow through the body surface. 
Mathematically this is written 

03) 

Expansion of equEbtion (3) in a Fourier cosine series that converges for 
r<bandO<e<jr gives 

W 

% 
= d,(Z) + 

c 
d&Z)cos 2n6 (9) 

where 

do( 2) = y 
( 

log b + ; - 1 
> 

Z'(2) 

d,(2)+ ' r"-A- 
n(Z%-1) ba 

r Z'(2) 
4n2-1 b 1 

Then (PL is obtained from equations (4), (8), and (9) in the form 

'pi = f,(Z)log r + 
c 
O3 f2n(Z) CO6 2ne 

r= 
n=l 

where 

foW = - y Z’( 2) 

f2d2) = 

Theoretical Drag Reduction Due to Body Shape Modification 

.- 
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As previously discussed, only the third term in equation (1) enters 
in the drag increment produced by adding a body shape modification with- 
out altering the cross-sectional area distr$bution. If subscript C 
refers to-the potential of the combination before adding body modifica- 
tions and subscript A refers to the potential after adding the modifi- 
cations 
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(=I * 

where 

(The contour C is shown in sketch (a).) With the conditions that 
%l a% a'pi -c-=-s 
an an an 

Os.ndg P VZ*(Z) on the wing and - = - - aw acpi on the 
an an 

boti 

&o a?0 
%ar 

+tll -=-- 9 + (cpw+(Pg+‘Pi+sI ar 1 4Z’(2) b 
a de - v s %b a (=I 

Bsertion of equations (5), (7), (g), and (10) and the orthogonality 
property of the cosine function into equation (12) gives 

co 
AII 2a -=I 9 V2 1 cos22n8 de - 

n=1 

4z*( 2) O3 
cs 

b adz) dr 
V a rz 

n=l 

Integration gives 

We obtain the optbmm values of g=(Z) by considering each term 
series separately. The values of e(Z) that give the maximum 
are 

&n(z) = - (& @g-g) za 

(13) 

of the 
w9 

(14) 

The mmimum tiag reduction is then 
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(15) 

As expected, the optimum value of g=(Z) and the drag reduction are zero 
when the wing trailing edge is cusped. 

Although the total drag increment depends only on conditions at the 
model base, the drag increment does not originate there. Actually the 
drag increment is distributed over the entire winged portion of the model 
as illustrated by the following example: Since the distribution of the 
amplitude function, g=(x), is arbitrary for x less than 2, choose 

&(X1) = Al (2). A2($ 

where x1 F x-(2-c) and I1 and & are chosen so that g2(Z) satisfies 
the condition of maximum drag reduction (eq. (14 ). The distribution of 
drag increment due to the addition of this g2(x 1 shape modification is 
shown in sketch (d) for a biconvex-section rectangular wing. 

Sketch (d) 

. 

J 
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Influence of Boundary-Layer Shock-Wave Interaction 
on Drag Reduction 

11 

streamlines at the trailing edge are 
assumed to be as shown at the top of 
sketch (e). The streamlines are par- 
allel to the sides of the trailing- 
edge wedge and undergo a pressure rise 
in traversing the trailing-edge shock 
wave. Because the pressure rise 
occurs behind the wing, it does not 
act to decrease the drag. If the 
trailing edge were cusped, as shown at 
the middle of sketch (e), the pressure 
rise would occur through a gradual 
compression in front of the wing 
trailing edge and the drag due to the 
trailing-edge angle would be 
eliminated. 

Inviscid S’ (2)#0 

lnviscid S’ (2) LO 

The influence of viscosity on the 
drag is somewhat smlar to that of 
cusping the trailing edge. Thebound- 
my layer allows the pressure rise 
through the trailing shock waves to be 
transmitted upstream. This thickens 
the boundary layer3 compression begins 
over the wing surface; and shocks move 
up in front of the trailing edge. The 
accompsnying pressure increase over 
the rear of the wing acts to decrease 
the pressure drag below its value on 

Viscid S’ (Z)#O 

Sketch (e) 

the basis of inviscid fluid theory. Such an effect has been shown by 
pressure distributions (e.g,, ref. 5) for two-dimensional airfoils in 

The foregoing calculations are based on inviscid-flow theory which 
imores the interaction between the trailing-edge shock wave of the wing 
(and body) and the boundary layer approaching the base. The questions 
arise as to how this interaction affects 
the over-all drag and how it affects 
the drag reductions due to the type of 
modifications of the body shapes cal- 
culated herein. In the theory the 

supersonic flow. The amount the pressure drag is reduced below the 
inviscid value depends on the boundary-layer thickness approaching the 
trailtig edge, the shock-wave strength (Mach number), and whether the 
boundary layer is lsminar or turbulent. A phenomenon similar to that 
shown at the bottom of sketch (e) is also important in the wave-making 
resistance of boat hulls. As pointed out by Havelock (ref. 6), the 
wave-making resistaqce is reduced by virtue of a thickening of the 
"friction belt" near the stern. 
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Since boundary-layer shock-wave interaction influences the flow at 
the trailing edge and since the drag increment expression (eq. (15)) 
depends only on conditions at the trailing edge, it is pertinent to ask 
if the drag reductions computed herein on the basis of in-viscid fluid 
theory are realistic. Although m/q is a function only of trailing- 
edge conditions, the drag reduction is distributed over the entire winged 
portion of the configuration as shown by the example in sketch (d). For 
this example the total drag increment up to x1/c = 0.65 (shaded region) 
is zero, so that the net drag reduction given by the present inviscid 
fluid theory is distributed in the region 0.65 < (x=/c) 5 1. Since 
boundary-layer shock-wave interaction effects will influence this drag 
distribution only near the trailing edge, it appears that most of the 
drag reduction predicted by the inviscid theory can be realized; the 
actual amount can only be determined by experiment. 

CONCLUDING REZWKS 

Equation (15) gives the maximum drag reduction obtained (In inviscid 
theory) by modifying the streamwise slopes of the body without changing 
the cross-sectional area. This expression is independent of the wing 
plan form since it depends only upon conditions at the base. However, 
the drag reduction is distributed over the winged portion of the wing- 
body combination to the extent that the streamwise slopes of the body are 
modified. This drag distribution does depend upon wing plan form. 

L 

To give an idea of the order of magnitude of the drag reduction 
given by equation (15), a comparison is made with the drag reductton 
given by the area-rule modification. For a delta-wing cylindrical-body 
combination (sketch (a)) with b/a = 3, the additional drag reduction 
(neglecting any change in base drag) given by the g2(Z) shape modifica- 
tion is 12 percent of the drag given by the first term in equation (1) 
(the area-rule term). This percentage varies somewhat with different 
configurations, but it should remain the same order of magnitude. The 
effect of the other g=(Z) modifications is negligible compared to 
the g2(b) modification. 

. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Mar. 21, 19% 
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